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Abstract

In this paper we study the asymptotic behavior of the positive
solutions of the rational difference equations
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where k,m € {1,2,...} and a is a positive number.
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1 Introduction

In [8] the author studied the global behavior of the second order rational
difference equation having guadratic term
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and the third order difference equation having quadratic term
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where x_a,x_1, 29 are real numbers. For the study of equation {1.1) the
author used the fact that (1.1) reduces to a linear nonhomogeneous equation.
Moreover, for the study of (1.2) he showed that equation (1.2) reduces to
(1.1).

Furthermore in [3] the authors investigated equation (1.1} with nonnega-
tive initial values ©_1, zg. Moreover if we get b = 1 in (1.1) then by dropping
either the term z,, or ©,— in the denominator of the equation (1.1) we ob-
tain the equations
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which have been studied in [2]. Finally, results concerning rational differ-
ence equations having quadratic terms are included in [1], [3]-[11] and the
references cited therein.

Now in this paper we study the following equations

ALy —m(k+1)+1
Tppl = —— Lkt g =001 (1.3)

H:Enfm(s+1)+1 +1

5=0

k
ATp-2k—1 Hfﬂn—Qs
s=0

Tntl = 5 K k (1.4)
H Tn—s + Hﬂin*zs + Hiﬂn—Qs—l
s5=0 s=0 s=0
and
OTn Tk
O o S L (1.5)

?
Tn + Lp—m(k+1)

where a is a positive number, m,k € {1,2,...} and the initial values of
the above equations are positive numbers. More precisely, we study the
existence of periodic solutions and the asymptotic behavior of the positive
solutions for equations (1.3)-(1.5). We note that equations (1.3)-(1.5) have
a common property: They reduces to a linear nonhomogeneous equation.



2 Siudy of equation (1.3)

First we study the existence of positive periodic solutions of period m(k+1)
for equation (1.3).
Proposition 2.1 Consider eguation (1.3). Suppose that
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Then equation (1.3) has periodic solutions of period m(k + 1}.

Proof. Let z, be a positive solution of (1.3) with initial values ©_p(q1)41,
T_m(k+1)+2s -+ To are positive numbers such that
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We prove that z,, is a periodic solution of (1.3) of period m(k + 1). From
(1.3) and (2.2) we get
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Then from (1.3) and (2.3) we obtain
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Working inductively we can prove that
Tmtj = Tomk+y, J=2,3,..

and so the proof of the proposifion is completed.
[n the next proposition we study the asymptotic behavior of tle positive
solutions of (1.3). We need the following lemma.

Lemma 2.1 Let x, be an arbitrary positive solution of (1.3). Then the
following statements are irue:
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then t, satisfies the nonhomogeneous linear difference equation
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and c;,d;, i = 0,1, .. are constants which are derived from (2.5), (2.7)
and (2.8).
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Proof. Let z,, be an arbitrary solution of (1.3). Then we get
k

ATp—m(k+1)+1 H:En +1—sm
s=1

ke
Ii[xn-Hﬁ(sJ.—] Jym +1
=0

k‘
T4l 1__[3"'.'&4—1 —sm —
s=1

which implies that

k
k O‘HTCnJrlf(sw}-l)m
5=0
Hxn+1ﬁsm. = P
=0
° H:En+1—(s+1)'m. el &
s=0
Then from (2.4) and (2.11) we have
a
1 o tn-{-l—m
b : +1
bnti—m

(2.9)

(2.10}

(2.11)

which nnplies that t,, satisfies the difference equation (2.6). Then relations
(2.7) and (2.8) follow immediately. This completes the proof of statement
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So, from (2.9)) and (2.12) it holds
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Therefore relation (2.13) implies that (2.10) is true. This completes the
proof of the lemma.

Proposition 2.2 Consider equation {1.3). Then the following statements
are true.

(i) If
0<a<l1 (2.14)

then every positive solution of (1.3) tends to zero as n — co.

(1) If (2.1) holds then every positive solution of (1.3) iends to a periodic
solution of period m(k + 1).

Proof. Let =, be an arbitrary nositive solution of (1.3).
(1) Suppose first that
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which implies that z;, tends to zero as n — co.
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In addition, if a is a real number such that 1 +a > 0 then
n(l+a) < a. (2.20)
Then from (2.19) and (2.20) we get
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So from (2.10) and (2.23) we have that z, tends to zero as n — co. This
completes the proof of statement (i).
(ii) If @, b > 0 then using (2.20) we can easily prove that
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Furthermore, from (2.1), (2.7) and (2.18) we have
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M > 0 such that
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This completes the proof of the proposition.

3 Study of equation (1.4)

First we study the existence of positive solutions of period 2k 4+ 2 for the
equation (1.4).

Proposition 3.1 Consider equation (1.4} where
o 2 (3.1)

Then equation {1.4) has positive periodic solutions of period 2k + 2.



Proof. Let @, be a positive solution of (1.4} with initial values such that
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Working inductively we can prove that
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This completes the proof of the proposition.
In the following proposition we study the asymptotic behavior of the
positive solutions of (1.4). We need the following lemma.

Lemma 3.1 Let z, be a positive solution of (1.4). Then the following
statements are true:
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which implies that

2k+1
k L
) 5=0
ﬂfrn—%Jri = Sktl kg s ; (3.10)
=()
’ H Tn—s T H:ﬂnu‘z.& + HCC-n—‘Z.-;—i
5=0 5=0 5=0
Then relations (3.3) and (3.10) imply that
' a
! _ Intn—1
tﬂ.‘!’l 1 ] “_j; 4 1
s ok

] n.t'n.——l tn t-n.-“l

from which we take that ¢, satisfies the difference equation (3.5). Then
relation (3.6) follows immediately.
(i) Using (3.3) we Lake
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From (3.12) relation (3.9) follows immediately. This completes the proof of
the lemma.

Proposition 3.2 Consider equation (1.4). Then the following statements
are irue:

(ii) 1f
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then every positive solution of (1.4) tends to zero as n — oo.
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(i) If
a>?2 (3.14)

then every positive solution of (1.4) tends to a periodic solution of
(1.4) of period 2k + 2.

Proof. Let z, be an arbitrary positive sclution of (1.4).
(i) Suppose that (2.15) is satisfied. Relation (1.4) implies that for j =
0,1,..,2k+1
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Therefore, from (2.15) and (3.1Z; we get
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which imply that z,, tends to zero as n — co.
Suppose that
1€ a.< 2, (3.17)

From {3.7) and (3.17) we can easily prove that
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Using (3.18) and (3.21) we have that
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Therefore, from (3.20) and (3.22) we can prove that

lim BY) = —c0, §=0,1,..,.2k+1 (3.23)

n—0oo

which from (3.19) imply that for 7 =0,1,...,2k + 1

oo
i?(_&: ‘—]_](.9«}—1)4_-_“."72 - 0 (3:‘)4)

i=p t?{i\?fl)(S"r 1}-+5

Hence, from (3.8), (3.9) and (3.24) we have that relations (3.16) are true
and so z,, tends to zero as n — co.

Suppose now that
a=2. (3.25)

So from (3.6) and (3.25) we get
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Therefore, from (3.20), (3.27) we have that (3.23) is satisfied and so arguing
as above (3.16) hold which implies that z, tends to zero as n — co.
(ii) Finally, suppose that (3.14) is satisGed. Then from (3.7) it is obvious
that
‘%f <1, [pi] <1, p3<1. (3.28)
2

In addition, from (3.6) we have that for j = 0,1, ..., 2k 41
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In addition, from (2.24) we get for 7 =0,1,...,2k + 1

T |
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It t | { : . }
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okt 1) (s+1) 245 — Lo(kt1)(s41)47 Lafk+1)(s+1)—2+] Loa(k+1)(s4+1)+j
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Using (3.6), (3.28), (3.29) and (3.30) there exists a positive number N such
that for j =0,1,...,2k +1

e Lok 1) (s+1)+5—2
Lak+1)(s+1)+j

Therefore, from (3.19) and (3.31) we have that there exist

< Npg(k+1)(s+1)+j_ (3.31)

lim BY) = pj < oo, j=0,1,...,2k+ L. (3.32)
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Hence, relations (3.8), (3.9), (3.19) and (3.32) imply that
nlglgo:r;g(kﬂ)m_j =g;j<oo, j=0,1,..,2k+1

and so the proof of the proposition is completed.

4 Study of equation (1.5)

In the first proposition we study the existence of positive periodic solutions
of (1.5) of period m(k + 1).

Proposition 4.1 Consider equation (1.5) where (3.25) holds. Let z, be
posttive solution of (1.5) such that

To = Tm(k+1)- (4.1)
Then xn is a periodic solution of (1.5) with period m(k + 1).

Proof Let @, be a positive solution of (1.5) such that (4.1) holds. Then
from (1.5), (3.25) we get

y 22T _mkr1)+1  2T0T_mk+1)41 w
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and working inductively we can prove that
L = Tp_m(k+1), = 1,2, ...

This completes the proof of the proposition.
In the last proposition of this paper we study the asympiotic behavior
of the positive solutions of (1.5). We need the following lemma.

Lemma 4.1 Consider equation (1.5). Let x,, be a positive solution of {1.5).
Thenifa#1, for=0,1,...,nik+1)—1 andn =0,1,... it holds

o T 1 g
Trm(k+1)+5 = {a-1) T’JI‘I 1 S (4'2)
s=1(.‘((?, ai 1)(5).‘;1&1( c+1)+7 iy
where
= :Efm,(k-}—i) 1
= Pl
I a—1

and ifa=1, forj=0,1,...,mlk+1) -1 andn=20,1,... it holds

= 1 _ Tem(k+1)

- == i = 4.3
Fom(k+1) 4 IJ—Sl;Ild +sm(k+1)+3’ z0 (4:3)
Proof. We set
roo e se _ Tn—m(k+1) (4.4)
Yn T - L
Then from (1.5) and (4.4) we get
1 1

Yn+1 = Eyn = 'C"L"; n=10,1,... (45)

So from (4.4) and (4.5) relations (4.2) and (4.3) follow immediately. This
completes the proof of the lemma.

Proposition 4.2 Consider equation (1.5). Then the following statements
are true:

(1) If 0 < a < 2 then every positive solution of (1.5) tends to zero as
n — 0O.

(¥) If a = 2 then every positive solution of (1.5) tends to a periodic
solution of (1.5) of period m(k + 1) as n — co.

(1ii) If a > 2 then every positive solution of (1.5) tends to oo asn — oo.
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Proof. Let 2, be an arbitrary solution of (1.5).

(i) Suppose that (2.15) holds. Then using (1.5) and arguing as in Propo-

sition 2.2 we can prove that z, tends to zero as n — co.
Suppose that
l<a<2

Let for  =0,1,...,m(k+1) -
3 1

L S D U ’
s=lc(a — 1)(=)mk+D+i 4
a

Dy =

We have for j = 0,1,...,m{k+1) — 1
D(J)) = Zln(c(a . ]_} )S?n(k+1 +4 T 1)

In addition, from (2.20) we take

~a

In(1 + <A
|In(1 + a)| < max{a, =

Using (4.8) and (4.9) and since
1<a

we can prove that

lim (In(DY)) = Lj<eo, j=0,1,..,mk+1)-1

n—oo

which implies that

lim DY) = Mj < oo, j=0,1,..,m(k+1)— 1.

n—0o0

Therefore, from (4.2), (4.6), (4.7) and (4.12) we have that
nlggomﬂ_m{k+1)+j =0, 7=0,1,..,mk+1)—1
and so x, tends to zero as n. — co.

Let now a =1. We set for j =0,1,...,m(k+1) —

T
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Then from (4.14) for 7 = 0,1, ...,m(k + 1) — 1 we take

In(K)) = —Z in(d +sm(k+1)+ j). (4.15)

5=1
So from (4.15) we can prove that

lim (In(KU)) = --0, j=0, 1,...,m(k+1) -1

n—oo L

which implies that

lim K =0, j=0,1,...,m{k+1)—1. (4.16)
n—00

Then relations (4.3), (4.14), (4.16) imply that (4.13) are true and so z,
tends to zero as n — oo.

(i) Suppose now that a = 2. Then from (4.10) relations (4.12) are true.
So from (4.2) we have

im @, ka1)45 = Mjz; < o0, j=0,1,..,mk+1)—-1

n—oo

and so z, tends to a periodic solution of (1.5) of period m(k-+1) as n — co.

(iii) Finally, suppose that a > 2. Then using (4.10), we have that rela-
tions (4.12) hold and so from (4.2) it is clear that @, tends to co &5 7 — co.
This completes the proof of the proposition.
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